Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

N-Ethylethanaminium 3,5,6-trichloropyridin-2-olate

Hui Zheng, Yun-Kui Liu, Dan-Qian Xu and Zhen-Yuan Xu*

State Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zhenghui86@tom.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.039 wR factor = 0.116Data-to-parameter ratio = 21.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title salt, $C_4H_{12}N^+\cdot C_5HCl_3NO^-$, the non-H atoms of the cation are essentially coplanar. Intermolecular $N-H\cdots O$ hydrogen bonds link two cations and two anions into a centrosymmetric cluster. The crystal packing is further stabilized by van der Waals forces.

Received 17 February 2006 Accepted 27 February 2006

Comment

The title compound, (I), was prepared as an intermediate for the synthesis of 3,5,6-trichloropyridin-2-ol-containing compounds, which exhibit potential bioactivity, such as chloropyrifos (Fakhraian *et al.*, 2004), chloropyrifos methyl (Baughman, 1989) and triclopyr (Fox *et al.*, 2002). The title compound was obtained by mixing sodium 3,5,6-trichloropyridin-2-olate with *N*-ethylethanaminium chloride and crystallized from diethyl ether.

$$CI$$
 N
 $O^ H_2N$

In the *N*-ethylethanaminium cation of (I), the non-H atoms form a serrated structure with C6-C7-N2 and C7-N2-C8 angles of 111.5 (2) and 112.56 (19)° (Table 1), respectively. The 3,5,6-trichloropyridin-2-olate anion, with an O1–C1 distance of 1.2699 (17) Å, is essentially planar, with an O1–C1-C2-C11 torsion angle of 0.7 (2)°. In the crystal structure, intermolecular $N-H\cdots O$ hydrogen bonds (Table 2) link two cations and two anions into a centrosymmetric cluster (Fig. 1). The crystal packing is further stabilized by van der Waals forces.

Experimental

Sodium 3,5,6-trichloropyridin-2-olate (1.10 g, 5 mmol) was dissolved in distilled water (20 ml) at 373 K, the solution was cooled to room temperature, and then N-ethylethanaminium, which was generated from diethylamine (1.0 ml, 10 mmol) with HCl (36%, 1.0 ml), was added dropwise with stirring for 0.5 h. The solution was extracted with diethyl ether (2 \times 15 ml) and dried over anhydrous magnesium sulfate. Suitable crystals were obtained from a diethyl ether solution (m.p. 399–400 K).

© 2006 International Union of Crystallography All rights reserved

Crystal data

 $C_4H_{12}N^+ \cdot C_5HCl_3NO^-$ Z = 2 $M_r = 271.57$ $D_x = 1.378 \text{ Mg m}^{-3}$ Triclinic, $P\overline{1}$ Mo $K\alpha$ radiation a = 7.527 (6) Å Cell parameters from 5373 b = 9.196 (6) Å reflections c = 10.978 (7) Å $\theta = 3.0 – 27.5^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ $\alpha = 106.36 (2)^{\circ}$ $\beta = 105.32 (3)^{\circ}$ T = 298 (1) K $\gamma = 105.28 (3)^{\circ}$ Chunk, colourless $0.38 \times 0.36 \times 0.28 \text{ mm}$ $V = 654.6 (8) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID diffractometer 2106 reflections with $F^2 > 2\sigma(F^2)$ ω scans $R_{\rm int} = 0.023$ Absorption correction: multi-scan $(ABSCOR; {\rm Higashi}, 1995)$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 10$ $k = -14 \rightarrow 14$

Refinement

Table 1 Selected geometric parameters (Å, °).

Cl1-C2	1.728 (2)	N1-C5	1.3181 (19)
Cl3-C5	1.735 (2)	N2-C7	1.480(3)
O1-C1	1.2699 (17)	N2-C8	1.467 (3)
N1-C1	1.347 (2)	C1-C2	1.421 (2)
C1-N1-C5	120.24 (15)	N1-C1-C2	118.02 (13)
C7-N2-C8	112.56 (19)	Cl1-C2-C1	118.02 (12)
O1-C1-N1	118.98 (15)	Cl1-C2-C3	121.17 (15)
O1 - C1 - C2	123.00 (18)	N2-C7-C6	111.5 (2)

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$\begin{array}{c} N2 - H201 \cdots O1 \\ N2 - H202 \cdots O1^{i} \end{array}$	0.90	1.88	2.7022 (19)	152
	0.90	1.87	2.748 (2)	166

Symmetry code: (i) -x, -y, -z + 1.

All H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and N—H = 0.90 Å, and refined as riding with $U_{\rm iso}({\rm H})$ = 1.17–1.34 $U_{\rm eq}$ (carrier atom).

Figure 1 The centrosymmetric hydrogen-bonded (dashed lines) cluster in (I), showing the atom numbering scheme and 40% probability displacement ellipsoids [symmetry code: (i) -x, -y, 1-z].

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

The authors thank the Joint Key Technologies R&D Programme of Changjiang Delta in China (grant No. 2004E60056) for financial support.

References

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Baughman, R. G. (1989). J. Agric. Food. Chem. 37, 1505-1507.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Fakhraian, H., Moghimi, A., Ghadiri, H., Dehnavi, M. A. & Sadeghi, M. (2004). Org. Process Res. Dev. 8, 680-684.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fox, A. M., Haller, W. T., Getsinger, K. D. & Petty, D. G. (2002). *Pest. Manag. Sci.* **58**, 677–686.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Larson, A. C. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). *CrystalStructure*. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.